Ground-state properties of small-size nonlinear dynamical lattices.
نویسندگان
چکیده
We investigate the ground state of a system of interacting particles in small nonlinear lattices with M >or=3 sites, using as a prototypical example the discrete nonlinear Schrödinger equation that has been recently used extensively in the contexts of nonlinear optics of waveguide arrays and Bose-Einstein condensates in optical lattices. We find that, in the presence of attractive interactions, the dynamical scenario relevant to the ground-state and the lowest-energy modes of such few-site nonlinear lattices reveals a variety of nontrivial features that are absent in the large/infinite lattice limits: the single-pulse solution and the uniform solution are found to coexist in a finite range of the lattice intersite coupling where, depending on the latter, one of them represents the ground state; in addition, the single-pulse mode does not even exist beyond a critical parametric threshold. Finally, the onset of the ground-state (modulational) instability appears to be intimately connected with a nonstandard ("double transcritical") type of bifurcation that, to the best of our knowledge, has not been reported previously in other physical systems.
منابع مشابه
Existence and Continuous Approximation of Small Amplitude Breathers in 1d and 2d Klein–gordon Lattices
We construct small amplitude breathers in 1D and 2D Klein–Gordon infinite lattices. We also show that the breathers are well approximated by the ground state of the nonlinear Schrödinger equation. The result is obtained by exploiting the relation between the Klein Gordon lattice and the discrete Non Linear Schrödinger lattice. The proof is based on a Lyapunov-Schmidt decomposition and continuum...
متن کاملExcitation Thresholds for Nonlinear Localized Modes on Lattices
Breathers are spatially localized and time periodic solutions of extended Hamiltonian dynamical systems. In this paper we study excitation thresholds for (nonlinearly dynamically stable) ground state breather or standing wave solutions for networks of coupled nonlinear oscillators and wave equations of nonlinear Schrödinger (NLS) type. Excitation thresholds are rigorously characterized by varia...
متن کاملState filters in state residuated lattices
In this paper, we introduce the notions of prime state filters, obstinate state filters, and primary state filters in state residuated lattices and study some properties of them. Several characterizations of these state filters are given and the prime state filter theorem is proved. In addition, we investigate the relations between them.
متن کاملGeometric Analysis of Bifurcation and Symmetry Breaking in a Gross–Pitaevskii Equation
Gross–Pitaevskii and nonlinear Hartree equations are equations of nonlinear Schrödinger type that play an important role in the theory of Bose–Einstein condensation. Recent results of Aschbacher et al. (3) demonstrate, for a class of 3-dimensional models, that for large boson number (squared L norm), N, the ground state does not have the symmetry properties of the ground state at small N. We pr...
متن کاملCompactons and chaos in strongly nonlinear lattices.
We study localized traveling waves and chaotic states in strongly nonlinear one-dimensional Hamiltonian lattices. We show that the solitary waves are superexponentially localized and present an accurate numerical method allowing one to find them for an arbitrary nonlinearity index. Compactons evolve from rather general initially localized perturbations and collide nearly elastically. Neverthele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2007